Evaluating variable reordering strategies for SLAM
نویسندگان
چکیده
State of the art methods for state estimation and perception make use of least-squares optimization methods to perform efficient inference on noisy sensor data. Much of this efficiency is achieved by using sparse matrix factorization methods. The sparsity structure of the underlying matrix factorization which makes these optimization methods tractable is highly dependent on the choice of variable reordering; but there has been no systematic evaluation of reordering methods in the SLAM community. In this paper we evaluate the performance of various reordering techniques on benchmark SLAM data sets and provide definitive recommendations based on our results. We also compare these state of the art algorithms against our simple and easy to implement algorithm which achieves comparable performance. Finally, we provide empirical evidence that few gains remain with respect to variants of minimum degree ordering.
منابع مشابه
The Bayes Tree: Enabling Incremental Reordering and Fluid Relinearization for Online Mapping
In this paper we present a novel data structure, the Bayes tree, which exploits the connections between graphical model inference and sparse linear algebra. The proposed data structure provides a new perspective on an entire class of simultaneous localization and mapping (SLAM) algorithms. Similar to a junction tree, a Bayes tree encodes a factored probability density, but unlike the junction t...
متن کاملEfficient Cholesky Factor Recovery for Column Reordering in Simultaneous Localisation and Mapping
Simultaneous Localisation And Mapping problems are inherently dynamic and the structure of the graph representing them changes significantly over time. To obtain the least square solution of such systems efficiently, it is desired to maintain a good column ordering such that fill-ins are reduced. This comes at a cost since general ordering changes require the complete re-computation of the Chol...
متن کاملThe Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping
We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the square root ...
متن کاملSebastian Thrun and Michael Montemerlo The Graph SLAM Algorithm with Applications to Large - Scale Mapping of Urban Structures
This article presents GraphSLAM, a unifying algorithm for the offline SLAM problem. GraphSLAM is closely related to a recent sequence of research papers on applying optimization techniques to SLAM problems. It transforms the SLAM posterior into a graphical network, representing the log-likelihood of the data. It then reduces this graph using variable elimination techniques, arriving at a lowerd...
متن کاملAprilSAM: Real-time Smoothing and Mapping
For online robots, incremental SLAM algorithms offer huge potential computational savings over batch algorithms. The dominant incremental algorithms are iSAM and iSAM2 which offer radically different approaches to computing incremental updates, balancing issues like 1) the need to relinearize, 2) changes in the desirable variable marginalization order, and 3) the underlying conceptual approach ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012